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Abstract
A unique device is proposed for ultra-high density up- and downlink transmission. The device comprises of the chalcogenide 
Mach–Zehnder interferometer (MZI) and panda ring resonator with silver bars at the center microring at the upper and lower 
parts of the MZI. The device is operative based on the space–time function where the input space (soliton) via the input 
port multiplexes with time at the add port of the device with a wavelength bandwidth of 1.50–3.50 µm and the frequency 
bandwidth of 85–250 THz. The WGM is observed at the upper (uplink) and lower (downlink) center microring with suitable 
parameters. The silver bars at the center microring form the dipole oscillation, where the uplink and downlink plasmonic 
antennas have the directivity 18.68 and 13.27, and gain is 9.34 and 6.64, respectively. The light fidelity (LiFi uplink and 
downlink) employs the wavelength spectrum while the wireless fidelity (WiFi uplink and downlink) employs the frequency 
spectrum. The LiFi uplink and downlink have an optimum wavelength of 2.30 µm and 2.27 µm, respectively, while the 
WiFi uplink and downlink have an optimum frequency of 130 THz and 132 THz. For the transmission signal, the bit rate of 
28 Pbits−1 is achieved. The bit error rate (BER) value of 0.36 is obtained which indicates the system performance. Low BER 
value indicates high system performance. The device can be employed for the coverage of the light-wave and microwave 
wavelength link for 6G communication, where AI (artificial intelligence), 3D communication, code encryption, and secured 
transmission can be applied.
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Introduction

Communication involves sending information over various 
network channels, where the information transmission 
varies depending on the channel capacity. The greater 
the speed of transmitting this information, the better the 

communication and wide application in human life. There 
are different types of networks such as the cellular networks 
(1G, 2G, 3G, 4G, and 5G) which transmit information. In 
the last 10 years, the 4G network is commercialized where 
the speed of transmitting information has greatly improved 
with wide application in various aspects of human life. 
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Recently, the 5G network has been commercialized with 
an increase in the speed of transmitting information and 
very wide applications. The 5G network has led to the 
establishment of smart technologies where big data plays 
a big role. There is always a need to constantly develop 
the kind of network used in transmitting the information. 
The better the network in terms of the bandwidth, the 
wider the application in various aspects of human life. 
The 6G network is an active area of research where it is 
expected that the bandwidth will be increased and also 
increase the area of application as compared to the 5G 
network. The 5G network has a maximum bit rate of 
35.46 Gbps while the 6G network is expected to have 
100 Gbps and beyond [1–9]. Chen et al. [10] surveyed 
the importance of a 6G network over the 5G network 
highlighting the improvement in the area of application. 
The 6G network can be employed as a pervasive intelligent 
system. Lu and Zheng [11] surveyed the intended impact 
of the 6G network on various aspects of human life. The 
study also proposes some definitions and applications of 
the 6G network as well as the architecture. Wang et al. 
[12] surveyed the possible security and privacy issues 
that are involved in the 6G network. The 6G network 
has the potential to be the network that will drive the 
AI system to the next level where it will have a massive 
impact on human everyday life. The security and privacy 
issues such as communication, access control, and 
authentication are discussed in the study. Encryption and 
malicious behavior are also security and privacy issues 
that are also discussed in the study. Manogaran et  al. 
[13] proposed a security measure that can be employed 
in a 6G network environment. The security measure 
that is integrated and based on block-chain is proposed 
to curtail the security and privacy issues that will arise 
in the 6G network environment. Ma et  al. designed a 
6G communication device. The device is an indoor 
terahertz communication device. The device consists of 
an intelligent reflecting surface (IRS) that is intended to 
improve indoor communication in the terahertz region of 
0.1–10 THz. Khan et al. [14] proposed a power technique 
that will improve the performance of a multi-access 
system that is employed for the internet of things. The 
multiple access system employed in the study is the non-
orthogonal multiple access. The power method employed 
did not affect the quality of service. Adeogun et al. [15] 
proposed a wireless 6G communication network system. 
The wireless system is based on isochronous real-time. 
The 6G wireless network system has a short range. The 
proposed wireless network can be employed in industry 
as production modules as well as robots. In this work, 
a chalcogenide MZI circuit is proposed for ultra-high 
density up- and downlink transmission. The chalcogenide 
MZI circuit has two panda ring resonators at the upper 

and lower arms. The silver metamaterial is embedded at 
the center microring which forms the plasmonic antenna. 
The plasmonic antenna can control light and have strong 
confinement where its tunability is high, making it suitable 
for terahertz applications [16]. This work aims to improve 
the operation bandwidth for 6G communication, where the 
transmission bandwidth and modes are the targets. The 
chalcogenide material is used as the MZI material because 
of its broad transmission bandwidth and has an ultra-
wavelength range of 1–10 μm [17]. The resonant results 
of the integrated circuit are obtained, which is suitable 
for the connection between light (LiFi) and microwave 
(WiFi) wavelength region. The proposed circuit offers 
the advantage to be applied for 6G communication. The 
simulation of the system involves the Optiwave program 
where the whispering gallery mode (WGM) [18, 19] which 
is employed for wireless communication is observed at the 
center microring while the Matlab program employing the 
parameters extracted from the Optiwave simulation is used 
to plot the graphs and obtain other results.

Theoretical Background

Using the Drude model [20, 21], the electric dipole oscillation 
excited by the silver bars can be achieved. The silver bars are 
embedded at the center microring with the Mach–Zehnder 
interferometer, which forms the communication device, as 
shown in Fig. 1.

where n is known as the electron density, m is known as the  
mass, � is known as the angular frequency, �0 is known 
as the relative permittivity, and � is known as the electron 
charge. The plasma frequency ( �p) at the resonance is 
obtained from the angular frequency, which is given by an 
Eq. (2).

the electron density becomes n =
�2
p�0m

e2
 from Eq. (2).

The space–time modulation function is given as [22]:
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Planck’s constant, where ℏ =
h

2�
 , and h is the Planck’s 

constant. B̄ and z are the soliton amplitude and propagation 
distance. T  is the propagation time of the soliton, LD=T2

0

�
 , 

where T0 is the initial propagation time. � is the propagation 
constant. The MZI output [23] is given in Eq. (4) and the 
output is normalized as given in Eqs. (5) and (6).

where � =
2�Δneff

�
L , L is the length of the stack layer, neff is  

the effective refractive index, and λ is the wavelength. I, 
I1, I2 defined as the intensities.

The communication device consists of the MZI which 
divides the input soliton into two equal parts. The MZI 
functions as a 50:50 coupler. The two panda rings are 
attached to the MZI and act as the upper and lower parts. 
The center microring has two small rings. The input port 
is labelled as Ein, the output of the communication device 
are the drop port and throughput port labelled as Edr, and 

(4)I = I1 + I2 + 2
√
I1I2Cos�

(5)
Ith

Iin
=

[
Eth

Ein

]2

(6)
Idrop

Iin
=

[
Edrop

Ein

]2

Eth while the add port is labelled as Eadd which acts as 
the port for modulation or multiplexing. The silver bars 
at the center microring are metamaterials which can form 
the metamaterial antenna as explained in [24].

Results and Discussion

The communication device is designed with the Optiwave 
program (OptiFDTD) [25] where the mesh cell size of 
218, 41, 861 (x, y, and z axes, respectively) is employed 
with the automatic implementation of the grid size by the 
program. The MZI is a chalcogenide material  (AS2Se3) 
having the refractive index of 2.818, and the panda 
ring structure at the upper and lower parts of MZI is 
silicon material. The optimized parameters in this work 
are the realistic parameters that can be employed for 
the fabrication of the proposed circuit in Table 1. The 
WGM modes and spin waves are formed when the two-
side rings are controlled when light travels around the 
center microrings with the optimized parameters. The 
polaritons are the electrons excited by plasmonic waves 
in the form of WGMs. The spin-waves are formed by 
the polarized electrons excited by the silver bars, where 
the transmission is formed by the dipole oscillation. 
The two side rings are known as the phase modulators, 
which induced the nonlinearity into the center ring. The 

Fig. 1  The microring plasmonic circuits, where E
in

 , E
add

 , E
d
 , and E

th
 are input, add, drop, and throughput ports, respectively. Ag: silver bars, Si: 

silicon, PD; R, R
R
 , R

L
 are defined as the center ring radius, and two side ring radii, respectively. K

R
 , K

L
 are defined as the coupling constants
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nonlinearity makes the observation of the WGM possible 
when the input light enters the system through the input 
port. The WGM results from the light been trapped within 
the center ring due to the nonlinearity. The wavelength 
bandwidth in this work is in the range of 1.50–3.50 µm, 
and the frequency bandwidth is in the range of 
85–250 THz. The simulation model boundary condition 
employed is the anisotropic perfect matched layer. The 
time-step of 20,000 is applied to obtain resonant results. 
The space–time function as given in Eq. (3) results from 
the input soliton multiplexing with time at the add port 
which excites the silver bars at the center ring and the 
behavior of the electron in the silver bars is described 
by Eq. (1). At the output of the system, normalization 
is applied as given in Eqs.  (5) and (6). The WGM is 
observed at the upper and lower center rings after the 
simulation of 20,000 time-steps with the appropriate 
parameters as given in Table 1. The WGM results are 
shown in Fig. 2. Figure 2 a is the WGM result at the 
upper center ring, where the uplink and downlink can 
perform in either light or antenna operation. Figure 2 b 
shows the flow of plasmons within the device. The WGM 
formed at the two center rings is employed for LiFi and 
WiFi communication network. The LiFi is employed in 
the wavelength spectrum while the WiFi is employed in 

the frequency spectrum. The LiFi bandwidth is in the 
range of 1.50–3.50 µm while the WiFi bandwidth is in 
the range of 85–250 THz. The output signals are plotted 
by the Matlab program employing the parameters taken 
from the results of the OptiFDTD simulation. Figure 3 
shows the output signals at the drop ports (upper and 
lower), throughput port, uplink, and downlink. The 
intensity at the throughput port is much higher than 
the other output ports. The throughput port forms the 
transmission signals where the signals been transmitted 
using the spin-wave. The output signals are plotted in the 
wavelength and frequency domains where broad spectral 
range and bandwidth are obtained, which are available 
for high capacity and security transmission for LiFi and 
WiFi links, respectively. The silver bars at the center 
microring forms the plasmonic antenna and the antenna 
profile is shown in Fig. 4. Figure 4 a and b is the uplink 
and downlink directivity. The directivity is dimensionless 
because no specific direction is considered as explained 
in [26]. The uplink directivity of 18.68 is higher than 
the downlink directivity of 13.27. Figure 4 c is the gain 
of the antenna where the optimum uplink gain is 9.34 
and the optimum downlink gain is 6.64 when the input 
power is varied from 100 to 500 mW. The gain is directly 
proportional to the input power. The higher the input 
power the higher is the gain. The change in output gain 
can be applied for sensing applications, where the electro-
optic sensors can be applied, where the sensor network 
can be linked, and real-time monitored and controlled. 
The LiFi and WiFi spectra are plotted in Fig. 5. Figure 5 
a is the LiFi downlink and uplink. The downlink has 
a peak wavelength of 2.27  µm while the uplink has 
a peak wavelength of 2.30 µm. Figure 5 b is the WiFi 
downlink and uplink. The downlink has a peak frequency 
of 132 THz while the uplink has a peak frequency of 
130 THz. The coverage wavelength and bandwidth are 
available for light and microwave transmission links, 
where the large bandwidth and spectral range are suitable 
for 6G communication. The spin waves of the uplink and 
downlink are plotted in Fig. 6 a and b.

Figure 6 a is the spin-wave plot of the LiFi uplink 
and downlink which are entangled zoomed from 2.40 to 
3.00 µm for clarity while Fig. 6b is the spin-wave plot of 
the WiFi uplink and downlink which are entangled zoomed 
from 90 to 120 THz for clarity. The entanglement plot 
of the transmission signal is shown in Fig. 6c, d for the 
uplink and downlink where the flip-flop outputs have been 
obtained from the test nodes, which can be configured as 
the entanglement of quantum code transmission. Figure 6 
e–f is the MZI output for the uplink and downlink where 
the spin projection is applied and at the throughput 
port, the spin is projected upwards to form the spin-up 
electrons while at the drop port, the spin is projected 

Table 1  The optimized simulation parameters

Parameters Symbols Values Units

Input power P 100–500 mW
Silicon center ring radius R 2.0 µm
MZI length L 60 µm
Si-small ring radius RL 0.8 µm
Si-small ring radius RR 0.8 µm
Dielectric constant Ag ∈r 1.0
Silver thickness d 0.1 µm
Silver length L 0.5 µm
refractive index of silver [32] nAg 0.14
Insertion loss � 0.01
Chalcogenide refractive index 

[33]
nchg 2.818

Coupling coefficient κ 0.50–0.70
Refractive index Si [30] nSi 3.42
Si nonlinear refractive index 

[34]
n
2

1.3 × 10–13 m2 W−1

Wavelength bandwidth �
1

1.50–3.50 µm
Waveguide core effective [34] Aeff 0.30 μm2

Waveguide loss α 0.50 dB.(cm)−1

Plasma frequency [35] ωp 1.2990 × 1016 rad s−1

Electron mass m 9.11 × 10–31 kg
Electron charge e 1.6 × 10–19 Coulomb
Permittivity of free space �o 8.85 × 10–12 Fm−1
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downwards to form the spin-down electrons. The electron 
spin results from the electron density that is formed by 
the oscillation of the electron cloud when the silver bars 
at the center ring are excited by the input space source 
(light). At the transmission port, the transmitted signal 
has a bit rate of 28 Pbits−1 as shown in Fig. 7. The time 
sequence QCA (quantum cellular automata) [27] is applied 
in distinguishing the electron spins (spin-up and spin-
down). The higher bit rates can be obtained by increasing 

the number of up- and downlink antennas and more 
multiplexed input signals. The simulation is validated by 
testing the transmission between up and downlink, where 
the bit error rate is obtained and plotted. The BER value 
shows the effectiveness of a system and the capability of 
the system in transmitting signals or information. Figure 8 
is the BER plot of the communication system where the 
AGWN communication channel (additive Gaussian white 
noise) is employed as explained in [28]. The BER value 

Fig. 2  Graphical results of 
the multi-access system. a 
The WGMs are observed at 
the upper and lower center 
microring with the appropriate 
parameters in Table 1. b The 
flow of plasmons within the 
device

Fig. 3  Plot of output signals with the uplink and downlink in the a 
wavelength domain and b frequency domain. Broad spectral range 
and bandwidth are obtained, which are available for high capacity and 

security transmission. Besides, the link between light and microwave 
is available using LiFi and WiFi links, respectively
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of 0.36 is obtained. The lower the BER value, the higher 
the system performance and vice versa. From Fig.  1, 
more nodes can be applied for big data transmission 
where the transmission signal at the throughput port can 
be multiplexed to obtain bit rates of 40 Pbits−1 and more 
[28]. It can be applied for 3D and quantum transmission 
as well as for brain sensors [29, 30]. It can also be 
applied for security networks and surveillance systems 

[31]. The achieved frequency bandwidth in this work is 
ranged between 85 and 250 THz, which is compared to 
[3] and [37], achieved 0.1–10 THz and 0.06–10 THz, 
respectively. The advantages of optical solution over rf 
(radiofrequency) are as follows: the frequency spectrum 
(THz) is higher, the security of data transmission is higher, 
the power consumption is low, the data rate is higher and 
more advantages as explained in [36].

Fig. 4  Plot of the plasmonic 
antenna outputs. a, b Uplink 
and downlink directivity. c 
Uplink and downlink gain. The 
change in output gain can be 
applied for sensing applications. 
The electro-optic sensors can 
be applied, in which the sensor 
network can be linked and real-
time monitored and controlled

Fig. 5  The plot of the LiFi uplink and downlink of the system are 
shown in Fig. 1. a A peak wavelength at 2.30 µm and 2.27 µm. b A 
peak frequency at 130 THz and 132 THz, where the coverage wave-

length and bandwidth are available for light and microwave transmis-
sion links, and the large bandwidth and spectral range are suitable for 
6G communication



Plasmonics 

1 3

Conclusion

A plasmonic antenna circuit of ultra-high density is pro-
posed for up- and downlink transmission. The plasmonic 
antenna circuit consists of the chalcogenide MZI and two 
panda rings (upper and lower) with silver bars at the center 
microring, which form the uplink and downlink plasmonic 
antenna. The proposed device has a wavelength band-
width of 1.50–3.50 µm while the frequency bandwidth 
is in the range of 85–250 THz. The uplink and downlink 

antennas have a directivity of 18.68 and 13.27, respec-
tively. The uplink and downlink antenna gains are 9.34 
and 6.64, respectively. The LiFi uplink and downlink have 
peak wavelengths of 2.30 µm and 2.27 µm, respectively, 
while the WiFi uplink and downlink have peak frequen-
cies of 130 THz and 132 THz, respectively. The bit rate of 
28 Pbits−1 is achieved. The BER value of 0.36 is obtained. 
In application, the device can be employed for 6G com-
munication, quantum transmission, big data analytics, and 
information encryption.

Fig. 6  The spin-wave outputs 
for both a, b LiFi and WiFi 
uplink and downlink, respec-
tively. c, d The flip-flop outputs 
obtained from the test nodes, 
which can be configured as the 
entanglement of quantum code 
transmission. e, f The MZI out-
put for the uplink and downlink
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