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Abstract: Path loss models are essential tools for estimating expected large-scale signal fading in a
specific propagation environment during wireless sensor network (WSN) design and optimization.
However, variations in the environment may result in prediction errors due to uncertainty caused
by vegetation growth, random obstruction or climate change. This study explores the capability
of multi-boundary fuzzy linear regression (MBFLR) to establish uncertainty relationships between
related variables for path loss predictions of WSN in agricultural farming. Measurement campaigns
along various routes in an agricultural area are conducted to obtain terrain profile data and path
losses of radio signals transmitted at 433 MHz. Proposed models are fitted using measured data
with “initial membership level” (µAI). The boundaries are extended to cover the uncertainty of the
received signal strength indicator (RSSI) and distance relationship. The uncertainty not captured in
normal measurement datasets between transmitter and receiving nodes (e.g., tall grass, weed, and
moving humans and/or animals) may cause low-quality signal or disconnectivity. The results show
the possibility of RSSI data in MBFLR supported at an µAI of 0.4 with root mean square error (RMSE)
of 0.8, 1.2, and 2.6 for short grass, tall grass, and people motion, respectively. Breakpoint optimization
helps provide prediction accuracy when uncertainty occurs. The proposed model determines the
suitable coverage for acceptable signal quality in all environmental situations.

Keywords: open rural area; RSSI model; multi-boundary fuzzy linear regression; wireless sensor
network; initial membership level

1. Introduction

The applications of a wireless sensor network (WSN) have been extensively studied.
The purpose of these applications is to facilitate data management as an intelligent net-
work. Therefore, it is very important to study wave propagation between the receiver
and transmitter. Substantial research has been performed on wave propagation between
sensor nodes. In particular, WSNs for precision agriculture have grown and developed
rapidly since green economy became a global trend. Precision agriculture aims to improve
agricultural products, costs, and resource management. WSN technologies (e.g., long-range,
low-power wide-area networks; Lora LPWAN) are remarkable devices for the wireless
communication network in the Internet of Things (IoT) wireless applications for precision
agriculture [1–3]. Solutions for long distance problems, low power consumption, and
a low-cost communications network are necessary. For a WSN at 433 MHz, the radio
wave propagates a longer distance than for a WSN at 2.4 GHz, although obstructions exist
between the nodes in the communication areas. The WSN provides online monitoring and
control, including data mining of crop growth and health through suitable node placement
in the target area [4]. Therefore, the coverage and continued connectivity in the WSN are
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very important design factors for node placement in a specific area, which require suitable
mathematic path loss models for certain environments.

There are many studies about the received signal strength indicator (RSSI) and path
loss models in agricultural and forest areas. The RSSI studies focus on accurate positioning
of WSNs in smart farming [5]. An empirical path loss model in forest environments at
2.4 GHz showed the predicted results of high grass–bushes, low grass, and bushes without
grass at 65 m [6]. Rapidly growing weeds can cause problems with wireless communication.
Therefore, the problem of wave propagation was studied in a grass area of a field. Accurate
positioning was based on the received signal strength (RSS) and the angle of arrival at an
agricultural farm (i.e., short and tall grass) [7]. Various changes in the farm environment
lead to difficult problems in modeling optimal conditions. To solve this problem, the
intelligent model can be trained to recognize different environments through machine
learning (ML). Then, the ML path loss models can be studied for mobile communication and
WSNs in agriculture because of the nonlinear property and uncertainty of path loss models.
Artificial neural networks (ANNs) are used in ML by providing a learning environment.
The ANNs for predicting the path loss of a macro cell showed accuracy compared to
traditional models [8]. However, the path loss of the wave also depends on the terrain and
frequency, which are very different. A ML-based urban canyon path loss prediction model
based on extensive 28 GHz measurements from Manhattan achieved a prediction error
(root–mean–square error; RMSE) of 4.8± 1.1 dB compared to 10.6± 4.4 dB and 6.5 ± 2.0 dB
for the 3GPP line of sight (LOS) prediction [9]. There are many different architectures of
neural networks used to model path loss prediction, such as a convolutional neural network
for fixed wireless access in suburban areas, obtaining an 8.59 dB RMSE [10]. An ANN-based
path loss prediction for the wireless communication network at 2.5 GHz presented the
rules for training and accuracy prediction [11]. The ANN and the adaptive neuro fuzzy
interference system were studied to build very high frequency and ultra-high frequency
path loss models. These models showed better prediction compared with selected empirical
models and field measured data [12]. Lastly, path loss prediction based on ANN and the
measurements at 189.25 MHz and 479.25 MHz provided the best ANN parameters and
minimal error [13].

The abovementioned studies showed that RSSI varies according to environment
and uncertainty, such as large-scale distance change, antenna height, tall grass, weeds,
and blockages between nodes. These make the RSSI fade, resulting in delayed or low-
quality communications. The present study applies the fuzzy theory to create a model for
path loss prediction which corresponds to the nature of the RSSI uncertainty in different
environments. This model is referred to herein as “multi-boundary fuzzy linear regression”
(MBFLR). It consists of a center line, two upper boundary lines, and two lower boundary
lines that cover almost all the RSSIs in the coverage areas. These components make the
proposed model provide limited interference in the upper boundary and lowest RSSI for
interruption. The proposed model defines the WSN characteristic in an agricultural farm
through ML. Moreover, it can predict the RSSI under uncertainty fading with accuracy and
can be applied to similar areas.

The following contributions are made to address the previously indicated issues:

(1) A ML path loss model with RSSI fluctuation boundaries is proposed using MBFLR
based on the measurements in different environments for short grass, tall grass, weeds,
and blockage.

(2) A breakpoint distance optimization is proposed for accurate prediction.
(3) The measured RSSI data are captured using Lora LPWAN at 433 MHz for differ-

ent environments.

The remainder of this paper is structured as follows: Section 2 presents the related
work; Section 3 proposes the MBFLR model; Section 4 demonstrates the experimental setup;
the results are depicted in Section 5; the discussion and description are in Section 6; and
finally, the conclusion and future work are presented in Section 7.
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2. Related Work

Many research studies have focused on propagation path loss models for vegetation
at frequencies of 200 MHz to 95 GHz within a distance of 400 m, such as in a review by
Dessales et al. in [14]. Studies on radio propagation were performed on short and tall grass
environments to support animal grazing in large-scale farming at a frequency of 2.4 GHz
by Olasupo et al. in [15] and Alsayyari et al. in [16]. Wireless communication near the
ground was proposed with the plane–earth model for VHF and UHF bands by Meng et al.
in [17]. The researchers limited their interest to specific phenomena, such as the impact of
near-ground or surface components on the signal propagation in different environments.
Additionally, path loss models with breakpoint distance on-ground, near-ground and
aboveground (5 cm, 50 cm, and 1 m) were measured and analyzed at a frequency of
470 MHz by Tang et al. in [18]. The path loss models for WSN in a palm garden used a
near-ground LOS model and tree attenuation factors by Anzum et al. in [19]. A path loss
model on a grass field was proposed at WiFi 2.4 GHz by García et al. in [20]. Additionally,
the effects of people motion on WSN 433 MHz and 868 MHz in building monitoring were
analyzed by Dessales et al. in [21]. In addition, a fuzzy system has been used in path
loss modeling. The three input fuzzy membership functions, namely, residual power of
sensor nodes, distance of the node from the base station node, and RSSI, together with two
output fuzzy membership functions, focused on the influence of the RSS on the cluster head
nodes and rounds [22]. Lastly, AI with ANFIS (adaptive neuro fuzzy inference system)
for near-ground WSNs in forest environments were proposed by Hakim et al. in [23].
This ML path loss model provided the lowest RMSE at 433 MHz for an open dirt road
environment compared with the empirical models such as optimized FITU-R near ground
model, Okumura-Hata model, and ITU-R maximum attenuation free space model.

In this study, propagation models in the form of RSSI–distance relationships at
433 MHz for WSN at antenna heights of 0.2 m, 0.7 m, and 1.2 m are proposed. Fur-
thermore, we apply fuzzy linear regression (FLR) with “initial membership level” for fitting
RSSI data in a short-grass field. The results also cover RSSI data in long grass and with
people motion within extended boundaries.

3. Multi-Boundary Fuzzy LR

The relationship between the RSSI and the distance (d) for the radio wave propagation
is expressed as follows in a mathematical LR form:

RSSIi = A− Blog(di) (1)

where A and B are the relationship coefficients. The distance and the RSSI values express the
regression coefficients with fuzzy numbers as follows due to the wave propagation uncertainty:

RSSI′i =
.

A−
.
Blog(di) (2)

The fuzzy membership functions of the fuzzy RSSI variables (RSSI’) can be derived
from the measurement uncertainties. The membership functions of fuzzy coefficients

.
A

and
.
B can be evaluated using the fuzzy regression analysis based on the fuzzy extension

principle [24–26]. The left–right (L–R) presentation of the fuzzy number provides a suitable
means for representing the fuzzy coefficients. Let

.
A be the coefficient expressed as follows:

.
A = f (C, L, R) (3)

where C is the central value, and L and R are the left and right spreads, respectively. The
membership function µA(x), of the triangular L-R fuzzy number is given by Equation (4).

µA(x) =

{
1− C−x

L f or C− L ≤ x ≤ C, L > 0

1− x−C
R f or C ≤ x ≤ C + R, R > 0

(4)
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Note that the maximum l-r spreads are the boundary of the model that occurs at
membership level 0.0. We incorporate the uncertainty not captured in the available mea-
surement data sets by using the proposed MBFLR model and define a variable membership
level µA as a factor [27] for fitting the certainty captured by RSSI data, called the “initial
membership level” (µAI), to extend the L–R spreads for the uncertainty not captured at
the lower membership levels (see Figure 1). According to this approach, each of the mea-
sured RSSI must be within the boundaries around the estimated regression curves at lower
µAI values. The spread of the membership function and the fuzziness of the regression
variables can be controlled by specifying the µAI level between 0 and 1. The µAI value is
useful in considering quantified uncertainties, such as the maximum or minimum RSSI,
caused by the fading electromagnetic wave. Accordingly, the left and right spreads of the
L–R fuzzy numbers

.
A and

.
B can be expressed as follows:

CA − LA (1−µAI ) ≤
.
A ≤ CA + RA (1−µAI) (5)

CB − LB (1−µAI ) ≤
.
B ≤ CB + RB (1−µAI) (6)

Figure 1. Concept of MBFLR.

The spread of the RSSI fuzzy number RSSI’ obtained from the measurement uncer-
tainty analysis is expressed as follows:

CRSSI−LRSSI≤ CRSSI ≤ CRSSI + RRSSI (7)
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Based on the uncertainty RSSI measurement, the fuzzy membership function of the
output has a triangular shape (see Figure 1). The two corners of the triangular base
represent the zero-membership level of fuzzy set A. For example, an initial membership
level (µAI) of 0.4 provides the lower bound of the fuzzy data curve 0.0(L) and 0.2(L) that
will intersect with the left spread of the lower membership values 0.0 and 0.2, respectively.
Similarly, the higher upper bound of the fuzzy rating curve 0.0(U) and 0.2(U) will intersect
with the right spread of the lower membership values 0.0 and 0.2, respectively. Therefore,
Equations (2) and (5)–(7) can be combined, such that the lower bound of the fuzzy data
curve intersects at the boundary of the left spread, and the upper bound intersects at that
of the right spread. Therefore, the lower and upper bounds of the fuzzy regression curve
can be presented in the following forms:

{Ca − La(1− µAI)} − {Cb − Lb(1− µAI)}log(di)≥ CRSSIi − LRSSIi (8)

{Ca + Ra(1− µAI)} − {Cb + Rb(1− µAI)}log(di) ≤ CRSSIi + RRSSIi (9)

As a function of the distance, the RSSI has two distinct regions due to the first Fresnel
zone region, that is, before and after the breakpoint distance. The RSSI is separated as
follows at the breakpoint distance dbp in Equation (10):

RSSI′i =
.

A1 −
.
B1log(di) for di ≤ dbp (10)

RSSI′i =
.

A2 −
.
B2log(di) for di > dbp (11)

.
A1 −

.
B1log(di) =

.
A2 −

.
B2log(di) for di = dbp (12)

where subscripts 1 and 2 denote the before and after breakpoint ranges, respectively. The
consideration of the two curves meeting at the breakpoint dbp leads to the expression of
Equations (13)–(15):

{Ca1 − La1(1− µAI)} − {Cb1 − Lb1(1− µAI)}log(di) ≤ CRSSIi − LRSSIi

{Ca1 + Ra1(1− µAI)} − {Cb1 + Rb1(1− µAI)}log(di) > CRSSIi + RRSSIi

}
for di ≤ dbp (13)

{Ca2 − La2(1− µAI)} − {Cb2 − Lb2(1− µAI)}log(di) ≤ CRSSIi − LRSSIi

{Ca2 + Ra2(1− µAI)} − {Cb2 + Rb2(1− µAI)}log(di) > CRSSIi + RRSSIi

}
for di > dbp (14)

{Ca1 − La1(1− µAI)} − {Cb1 − Lb1(1− µAI)}log(di) =

{Ca2 − La2(1− µAI)} − {Cb2 − Lb2(1− µAI)}log(di)

{Ca1 + Ra1(1− µAI)} − {Cb1 + Rb1(1− µAI)}log(di) =

{Ca2 + Ra2(1− µAI)} − {Cb2 + Rb2(1− µAI)}log(di)

Ca1 − Cb1log(di) = Ca2 − Cb2log(di)


for di = dbp (15)

The minimum spread criteria are considered to evaluate the fuzziness output. The
minimum spread of the fuzzy numbers is obtained by minimizing the output support for a
total of n observations consisting of m distance observations:

v =
p
∑

i=1
|{Ca1 + Ra1 (1− µAI)} − {Cb1 + Rb1(1− µAI)}log(di)

−{Ca1 − La1 (1− µAI)} − {Cb1 − Lb1(1− µAI)}log(di)|

+
m
∑

i=p
| {Ca2 + Ra2 (1− µAI)} − {Cb2 + Rb2(1− µAI)}log(di)

−{Ca2 − La2 (1− µAI)} − {Cb2 − Lb2(1− µAI)}log(di)|

(16)
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The set of Equations (10)–(16) provides a mathematical formulation of the fuzzy regres-
sion analysis problem using the fuzzy form of the input and output variables. The formu-
lation leads to an optimization problem for coefficient evaluation in Equations (8) and (9)
in terms of the central value and the left and right spreads. Equations (13) and (14) pro-
vide linear inequality constraints, while Equation (15) provides an equality constraint for
optimization. Figure 2 illustrates the step-by-step procedure for the fuzzy regression.Sensors 2023, 23, x FOR PEER REVIEW 8 of 24 
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4. Experimental Setup

The propagation model for the short and tall grass was investigated by performing
an extensive experiment campaign using the LoRa 433 MHz WSN at a smart farm in
Nakornchaisri. The smart farm located in the West suburbs of Bangkok has GPS coordinates
of 13.77242 and 100.17602. The LoRa device is a non-cellular, long-range and low-power
wireless technology widely used in the IoT to communicate between nodes and gateways.
Table 1 presents the WSN specification and measurement parameters. The equipment
characteristics influenced the RSSI (e.g., spreading factor (SF) and bandwidth) [19]. The
first measurement step was conducted in normal short grass. The other measurements
were implemented for the uncertainty’s phenomena of the surrounding environments. The
measurement showed varying RSS data for each antenna height. Natural propagation
phenomena known as the diffraction, refraction, and reflection of the transmitted signal
caused by the surroundings of the rural open environment were also observed. Some of
the excess attenuations were possibly caused by the uncertainty’s phenomena, such as
the grass height, weeds, uneven ground, and animal movement. The measurements were
performed in both the dry and rain seasons; however, the effects of rainfall for frequencies
below 10 GHz showed insignificant effects on the signal propagation [28]. The SF and
bandwidth were fixed to 7 and 125 kHz, respectively, for the distance between 0 m and
40 m to concentrate on the signal fluctuation in the interesting surroundings.

Table 1. Summary of the equipment and measurement parameters.

Parameter
Value

Unit(min, max)

Antenna gain (omni-directional) 2.3 dBi

Frequency 433 MHz

Bandwidth (BW) 125 kHz

Spreading Factor (SF) SF7

Pr (d0 = 1 m) (average) −57 dBm

Output power 10 dBm

Coding Rate (CR) 4/5

Antenna height (htx, hrx) (0.2, 0.7, 1.2) m

Short grass height (0.0, 0.3) m

Tall grass height (0.3, 0.5) m

Breakpoint distance 15 m

Small-scale distance (λ/4) 0.4 m

Large-scale distance (Tx-Rx) (1, 40) m

4.1. Short Grass

The experiment was conducted in a corridor grass area surrounded with banana and
mango trees. The WSN comprised fixed (receiving node or Rx) and mobile (transmitting
node or Tx) nodes (please see Figure 3 (left)). The Tx mobile node was moved every 5 m
along a straight line between the Tx and Rx nodes. The fixed node used the collected RSSI
via a notebook to estimate the path loss between the two nodes based on MBFLR. The grass
area was 5.0 m × 100 m with the minimum and maximum distances of 1 and 40 m, respec-
tively. The measurements were performed in both forward and reverse directions during
the months of January to June 2022. The RSSI values were collected for approximately 60 s
for each measured point and repeated thrice to obtain 540 RSSI data sets for each antenna
height. The antenna heights for the transmitting and receiving nodes were 0.2 m, 0.7 m,
and 1.2 m above the ground. The measurements were repeated every month from no grass
(~0 cm) to tall grass (~50 cm). We also considered the breakpoint distance to separate the



Sensors 2023, 23, 3525 8 of 20

propagation region into two zones for our measurement. Considering the first Fresnel zone,
the breakpoint distance depended on the antenna heights above the ground, as shown in
Equation (17):

dbp =
4hthr

λ
(17)

where ht and hr are the transmitting and receiving antenna heights, respectively, and λ is
the carrier wavelength. Figure 4 depicts the RSSI–distance relationship of the large-scale
fading for the distance before and after the breakpoint. Note that dbp with a 1.2 m antenna
height was at an 8.3 m (0.92 dB) distance from the receiving node for modeling. The PLEs
before dbp were approximately 20 (19.4), while the PLEs after dbp were more than 20 (25.87)
for the LOS propagation theory [29].
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4.2. Tall Grass and Weeds

The uncertainty’s phenomena in the tall grass and weed between the Tx and Rx nodes
were measured to capture the impossible data in the short grass environment. The tall grass
and weed height was approximately 30–50 cm. Tall grass and weed covered the surface of
the measured area by approximately 70%. The measurements were performed with a large-
scale fading both before and after the breakpoint distance. The measured RSSI was used to
model and validate MBFLR. Figure 5 shows the uncertainty in the observed RSSI–distance
relationship. The PLEs before dbp were approximately 20 (18.37) like the short grass, while
those after dbp were more than 26.95 (i.e., more than the short grass (25.87)) because of the
blockage from the tall grass at 0.2 m antenna height above the ground.

Figure 5. Uncertainty in observed RSSI and distance of tall grass and weed, for all antenna heights.

4.3. People Motion

The effect of people moving between the communication nodes at the 433 MHz
influenced the received signal quality, such as in building communication [21]. Therefore,
this experimental study was performed in two scenarios, that is, random and full blockage,
to detect and capture the effects. For the random blockage, one farmer continually walked
between the two nodes in the experiment, while for the full blockage, two farmers stood
near two nodes (see Figure 6). Figures 7 and 8 illustrate the effect results for the first and
second scenarios, respectively. Note that the PLE before dbp was less than 20, and the
minimum RSSI occurred at a 1 m distance due to the fast fading from the obstruction (i.e.,
people moving), while the PLE after dbp was still more than 20. Note that the blockages
placed the RSSI in a lower boundary.
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5. Results

The measurement results showed a varying signal strength for each measurement
point and surrounding environment. Figures 4–8 depict a few interesting facts. First, the
PLEs before dbp were still approximately 20 from the Fresnel zone clearance effect (see
Figures 4 and 5) because the transmitter and receiver antenna heights were above the grass
and weed surfaces. In general, the diffraction loss may be neglected if an obstruction does
not block the volume contained within the first Fresnel zone [30]. However, in the case of
the blockage between the nodes in Figure 6, the RSSIs were in low levels and made the
PLEs lower than 20 because of the Fresnel zone non-clearance effect. According to this
rule of thumb, as long as 55% of the first Fresnel zone is not kept clear, a further Fresnel
zone clearance will significantly alter the diffraction loss. However, the PLEs were more
than 20 after dbp, confirming the Fresnel zone theory. Another interesting fact was that
the large fluctuation occurred at all distances (see Figure 7) in the case of one blockage
moving between the nodes (see Figure 6a). This was because the Fresnel zone clearance
was changed by the blockage movement. In contrast, in the case of the blockages fixed at
each node (see Figure 6b), large attenuation and fluctuation occurred at only a 1 m distance
and small fluctuation occurred in the distance between 5 and 40 m intervals (see Figure 8).
The measured RSSIs were fitted to the models and compared as shown below.

5.1. Proposed LR Models

Figure 4 and Equations (18) and (19) present the empirical propagation models with
the separated distances for the short grass environment.

RSSI1(d) = −53.79− 19.42 log(d); d ≤ dbp (18)

RSSI2(d) = −49.31− 25.87 log(d); d > dbp (19)

where d is the distance between the two nodes. The RSSI models were the CI (close in free
space) and dual-slope models. The PLEs before the breakpoint distance were approximately
20, while those after were more than 20. These values confirmed the wave propagation
theory for the LOS condition. We used the breakpoint distance at 15 m (log (15) = 1.18)
(Figure 4) calculated from Equation (11) with a 1.2 m antenna height to determine the
overall separated parts of communication. Similarly, the proposed models for the tall grass
and weed environments are presented as follows:

RSSI1(d) = −56.04− 18.37 log(d); d ≤ dbp (20)

RSSI2(d) = −43.76− 26.95 log(d); d > dbp (21)

Equation (20) shows that the PLE is mostly unchanged compared to Equation (18).
This follows from the theory that the PLE is still approximately 20 in the first Fresnel zone
region for the incomplete blocking case in tall grass and weed. However, this effect occurs
after the breakpoint and makes the PLE increase as shown in Figure 5 and Equation (21).

For the case of people moving, the experiment was performed in two scenarios:
(1) random blocking, and (2) full blocking. For the first scenario, one farmer walks forward
and reverse between the communication nodes for all antenna heights as shown in Figure 6a.
The propagation result is shown in Figure 6b and expressed in Equations (22) and (23),

RSSI1(d) = −65.00− 8.95 log(d); d ≤ dbp (22)

RSSI2(d) = −43.76− 23.52 log(d); d > dbp (23)

Equation (22) shows that the PLE before the breakpoint was less than 20 since the
random movements make the RSSIs fall, especially at the reference distance (1 m) as shown
in Figure 7. In the case of distance before breakpoint, the maximum radius of the first
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Fresnel zone is small compared with the obstruction side. This makes the path loss slope
decrease greatly. In the case of distance after breakpoint, the radius is very large compared
with the obstruction side; therefore, the path loss slope shows almost no change. Thus,
breakpoint distance optimization makes the prediction accurate, especially in the case of
the distance after breakpoint. Thus, the PLE in Equation (23) was still more than 20. In the
case of the second scenario, two farmers fully blocked the radio wave at each node (see
Figure 6b). Figure 8 depicts the propagation result expressed in Equations (24) and (25),

RSSI1(d) = −70.47− 10.14 log(d); d ≤ dbp (24)

RSSI2(d) = −59.67− 21.84 log(d); d > dbp (25)

In Figure 8, the RSSI in each distance was collected in the lower bound because the
radio paths were blocked from obstructions. This caused a small effect from the multi-path
fading. Equation (24) shows that the PLE before the breakpoint was mostly equal to that in
Equation (22) with one moving person and that with the PLE of Equation (25), which was
also more than 20.

5.2. Proposed MBFLR Models

The LR model above cannot provide the minimum RSSI that influences disconnected
communication, maximum RSSI, and interference to another network. Hence, MBFLR was
applied. The individual RSSI measurements with all the antenna heights (0.2 m–1.2 m) were
fuzzified and aggregated into a combined uncertainty for the RSSI–distance relationship
based on the LOS short grass environment conditions. Two different groups of uncertainty
in the RSSI measurements were considered before and after the breakpoint distances. The
RSSI uncertainty was expressed herein as triangular fuzzy numbers with a membership
level of 0 to 1. The fuzzy aggregation of the uncertainties was used in the fuzzy LR analysis
with fuzzy output variables. For simplicity, the symmetrical triangular L–R fuzzy numbers
for coefficients A1, B1, A2, and B2 (Equation (8) were equal to the left and right spreads,
respectively. The decision variables for the fuzzy regression were reduced to eight, that is,
central values Ca1, Ca2, Cb1, and Cb2 and spreads Ra1, Ra2, Rb1, and Rb2 for the distance
before and after the breakpoint distance coefficients. An initial membership level (µAI) was
used for the modeling, which increased or decreased the spread of the fuzzy regression
curve and the output spread. The uncertainty in the RSSI measurements was expressed by
the wide spread of their fuzzy numbers; thus, the µAI values can be varied for optimization.
The fuzzy regression analysis result using the minimum spread criteria (Equation (16))
with 0.4 µAI is expressed as:

RSSI1(d) = [−55.4,−18.2] + [−16.2, 0.2] log(d); d ≤ dbp (26)

RSSI2(d) = [−42.9,−22.5] + [−26.8, 4.9] log(d); d > dbp (27)

where the central and spread of fuzzy coefficients
.

A and
.
B are −55.4, −18.2 and −16.2,

0.2 respectively for Equation (26), and are −42.9, −22.5 and −26.8, 4.9 respectively for
Equation (27). The analysis produced upper (U) and lower (L) curves bounding the fuzzy
distance and RSSI data. The uncertainty bound curves for the different membership levels
represented µAI of belonging of the RSSI values corresponding to a particular measured
distance. The closer the membership level was to one, the wider the boundaries were. The
spread of the fuzzy regression curves depended on the µAI used during the regression
analysis, while that of the uncertainty bound curves depended on the µAI of 0.4 and two
different levels of belonging (i.e., 0.2 and 0.0) for the measured RSSI in different grass
environments. The curves between the lower 0.4(L) and upper 0.4(U) bounds represent
the total uncertainty of the RSSI–distance relationship in the normal short grass area (see
Figure 9). Meanwhile, those between 0.2(L) and 0.2(U) represent the uncertainty in the
short and tall grass and weed (see Figure 10). Similarly, the curves between 0.0 L and 0.0 U
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covered all the uncertainties in the available data set of the short and tall grass uncertainties,
including the effect of the one moving person (see Figure 11). However, the RSSI fell to
the lower bound (0.0 L) in the case with two people blocking because the radio waves
were mostly blocked at both nodes (see Figure 12). This case cannot influence the WSN
disconnection because of the limited low signal (>−91 dB) and very large change of signal.
Almost all RSSIs were between the central line (1.0) and the lower boundary (0.0 L) (see
Figure 13).

Figure 9. FLR curves for short grass with membership level 0.4.

Figure 10. FLR curves for tall grass and weed with membership level 0.2.
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Figure 11. FLR curves for one person moving with membership level 0.0.

Figure 12. FLR curves for RSSI with two people blocking at membership level 0.0.

5.3. Model Comparison

The RSSI data were collected herein for 433 MHz LoRa channels, and then analyzed.
The data comparison was then used to represent the path loss models’ behavior. To compare
our RSSI and path loss models, the received signals were obtained through Equation (28):

RSSI(dB) = Pt + Gt + Gr− Path loss (28)

where Pt is the transmitting power (dB), and Gt and Gr are the gains of the transmitting
and receiving antennas, respectively.
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Figure 13. MBFLR for all fuzzy RSSI.

The RMSE was calculated as follows to observe the deviation of the measurement and
related empirical models:

RMSE =

√
∑N

i=1(Measured RSSI −Model)2

N
(29)

In this work, we attempt to provide different perspectives. Therefore, we assessed
the performance by comparing the proposed model with the three following propagation
models of a similar environment at the same frequency, namely: One Slope Path Loss
Prediction Model (433 MHz), Optimized FITU-R NGF, and ITU-R MA FSPL.

(1) One-slope Path Loss Prediction Model (433 MHz)

An empirical path model for a palm plantation was proposed based on the measure-
ment of the LoRa 433 MHz at the available spreading factors (SF7–SF12) and bandwidths
(125, 250, and 500 kHz) for wireless sensor networks [19]. The model for the LOS with grass
at the 1 m antenna height is presented below:

PLLOS(433MHz) = PL0 + 10nlog(d) (30)

where PL0 is the reference path loss at the 1 m distance from the transmitter; d is the
distance between the transmitter and the receiver; and n is the PLE equal to 2.37 for SF7
and BW 125 kHz.

(2) Optimized FITU-R Model for Near-ground Forest (Optimized FITU-R NGF)

This model proposes the optimization of the FITU-R (fitted ITU-R) model for the
near-ground path loss modeling in a forest environment [17]. It considers the plane earth
model that explains the direct ray in addition to the ground-reflected ray received by the
receiver in Equation (31).

PLPlaneEarth(db) = (40 log d)− (20 log ht)− (20 log hr) (31)

The ITU-R foliage attenuation (AITU−R foliage) was added into the plane earth model
as follows:
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AITU − R f oliage(dB) + PLPlaneEarth(dB) = 0.2 f 0.3d0.6 + (40 log d)− (20 log ht)− (20 log hr) (32)

where f is the frequency carrier in GHz; ht is the antenna transmitter height in meters; hr is
the antenna receiver height in meters; and d is the distance between the transmitter and the
receiver in meters.

(3) ITU-R Maximum Attenuation and Free Space Path Loss (ITU-R MA FSPL)

This model is recommended by the International Telecommunications Union for the
30 MHz–30 GHz range. In the case of the LOS, the ground-reflected ray in this environment
is negligible because the forest ground is covered with full grass and/or weed that absorbs
the radio waves. However, in the case of the NLOS, the maximum attenuation is calculated
and combined with the LOS, as shown in Equation (33) [31]:

PLMA−ITU−R(dB) = AM

(
1− e−Rd/AM

)
+ 32.44 + 20 log d + 20 log f (33)

where AM is the maximum excess attenuation in dB; R is the initial slope of the attenuation
curve in dB/m; d is the distance between the transmitter and the receiver in km; and f is
the frequency carrier in MHz.

6. Discussion

To optimize the MBFLR model for all the measured RSSIs, the measured RSSI data
were first fitted with the LR dual-slope models (Equations (18) and (19)) for the short grass
environments. All measured RSSIs were in the boundary with membership level 0.4 (see
Figure 9). Meanwhile, in the case of the tall grass and weed in Equations (20) and (21),
the boundary was expanded with membership level 0.2 to cover the measured RSSI (see
Figure 10). The central line of both graphs shows the same equation; however, the lowest
RSSI occurred at a 40 m distance with a −103 dB value when the environment was tall
grass and weed. In the case of one blockage movement in Equations (22) and (23), the
measured RSSIs fluctuated along the measurement distances of 1–40 m with a maximum
range of 28 dB (−66 to value −94) at a 10 m distance (see Figure 11). The third boundary
was also expanded with membership level 0.0 to cover all the measured RSSIs. However,
outward RSSIs existed at the lower boundary, which occurred only at the 1 m distance
with a maximum range of 23 dB (−68 to −91) when the two blockages were close to the
transmitting and receiving nodes (see Figure 12). This model is shown in Equations (24)
and (25). Note that the PLEs before dbp in the case of the blockages were small (i.e., less
than 20) due to the weak RSSI at the reference distance of 1 m. This phenomenon can
hardly occur because the blockage was close to the monitoring node (i.e., receiving node),
which should be clear from any obstructions. In addition, this minimum signal level (−91)
was sufficient to connect the communication. Finally, the MBFLR model can be expressed
in Equations (26) and (27) with a 0.4 µAI value, which can predict the path loss when the
environment changes due to natural and human causes. This makes the WSN more stable
after planning with the proposed model.

In the statistical error analysis results presented in Table 2, the smallest value indicated
that the model had the best matching performance between the predicted and observed
values. Based on the statistical evaluation, the proposed MBFLR model had the lowest
RMSE scores of 0.8, 1.2, and 2.6 for the short and tall grass and blockages, respectively.
Note that the observed values were compared with the predicted boundary values. The
proposed dual-slope models provided a large RMSE because of the large RSSI fluctuation
from the regression line, especially in the tall grass and weed environments (see Figure 10).
In the case of the LR line models, the best model was FITU-R MA FSPL, with the lowest
RMSE score of 4.08 for the short grass environment. However, the RMSE scores for the
tall grass and blockage environments were 10.9 and 8.1, respectively, due to the large RSSI
fluctuation. The second-best model was the One Slope PL_LOS 433 MHz model, which
showed the lowest RMSE score of 5.7 for the short grass environment. The RMSE scores for
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the tall grass and blockage environments were 11.8 and 8.3, respectively. The worst model
was the Optimized FITU-R NG, with the lowest RMSE scores of 25.2, 27.7, and 24.7 for
the short and tall grass and blockage environments, respectively, especially at the distance
before dbp. However, this model meets the upper boundary and the lower boundary of the
MBFLR model at distance of approximately 1 m and 40 m, respectively (see Figure 14).

Table 2. Statistical evaluation for each path loss model using RMSE.

Name Models
RMSE

Short
Grass

Tall Grass
& Weed

People
Blockage

Optimized
FITU-R NG

[17]

AITU − R f oliage + PLPlaneEarth =

0.2 f 0.3d0.6 + (40 log d)− (20 log ht)− (20 log hr)
25.2 27.7 24.7

FITU-R MA
FSPL [31]

PLMA−ITU−R(dB) =
AM

(
1− e−Rd/AM

)
+ 32.44 + 20 log d + 20 log f

4.3 10.9 8.1

One Slope PL
LOS, 433 MHz [19]

PLLOS(433MHz) = PL0 + 10nlog(d)

(n = 2.37 for SF7 and BW 125 kHz)
5.7 11.8 8.3

Proposed
dual-slope
(Based on

measurement)

- short grass: RSSI1(d) = −53.79 − 19.42log(d); d <
dbp

RSSI2(d) = −49.31 − 25.87log(d); d > dbp
- tall grass: RSSI1(d) = −56.04 − 18.37log(d); d < dbp

RSSI2(d) = −43.76 − 26.95log(d); d > dbp

4.6
4.4

11.4
10.9

8.0
7.8

Proposed
(MBFLR)

RSSI(d) = [−55.4, −18.2] + [−16.2, 0.2]log(d), d < dbp
RSSI(d) = [−42.9, −22.5] + [−26.8, 4.9]log(d), d > dbp

- µAI = 0.4
0.8 1.2 2.6

Figure 14. Comparisons between the proposed model and the other models.
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7. Conclusions

In this study, we investigated and analyzed the RSSI behavior on grass environments
with low transmitter and receiver antenna heights from the ground. Accordingly, we
introduced a fuzzy MBFLR model to predict the near-ground path loss in different envi-
ronment scenarios. The obtained results showed that the proposed MBRLR model with
multi-boundaries provides the best RMSE with measurement results in the short grass, tall
grass and weed, and blockage environments. The fuzzy MBFLR model achieved the lowest
RMSE score of 0.8 for the short grass environment, the lowest RMSE score of 1.2 for the
tall grass with weed environment, and an RMSE score of 2.6 for one and two blockages
between the nodes. The Optimized FITU-R Near-ground Model achieved the highest
RMSE score of 25.2 for the short grass environment, the lowest RMSE score of 24.7 for the
tall grass with weed environment, and an RMSE score of 27.7 for one and two blockages
between the nodes. A large error was also found for the NLOS in the case of blockages,
although this model was used for the vegetation loss. The ITU-R MA FSPL, One Slope PL
open-area 433 MHz, and dual-slope models based on the measurements provided good
predictions only for the open-area environment without any blockages. The RMSE values
indicated that the Optimized FITU-R Near-ground Model was not suitable for predicting
the RSSI value in all situations in the grass environment due to its large PLE. By contrast,
the fuzzy MBFLR performed the most accurate prediction and cover of the RSSI values for
the near-ground propagation for all environments. However, further studies should be
carried out on a large scale in other environments or with different types of vegetation and
performed during all seasons in order to obtain coverage path loss predictions as well.
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Description Abbreviation
Received signal strength indicator RSSI
Fuzzy number of RSSI RSSI’
Distance between transmitting and receiving nodes d
Central value C
Left spread L
Right spread R
Breakpoint distance dbp
Coefficients of the relationship A, B
Fuzzy coefficients of the relationship

.
A,

.
B

Multi-boundary fuzzy linear regression MBFLR
Membership function µA(x)
Initial membership level µAI
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