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ABSTRACT 

This paper concentrates on the design of a composite nonlinear stabilizing state feedback 
control for power systems with static synchronous compensator (STATCOM) with a 
combined improved backstepping strategy and nonlinear disturbance approach. The 
disturbance observer is employed to estimate unavoidably external disturbances. Thus, the 
resulting controller enables us to successfully not only stabilize the system stability but also 
reject undesired external disturbances. To indicate the effectiveness and superiority of the 
developed process, numerical simulation results are given to show that the proposed 
composite control law can improve dynamic performances, rapidly suppress system 
oscillations of the overall closed-loop dynamics, and outperform a conventional backstepping 
control technique despite the presence of inevitably external disturbances 
KEYWORDS: Backstepping control, STATCOM, generator excitation, disturbance observer. 
 
1. Introduction 

It is well-known that modern power systems have a rapid increase in the size and 
complexity. When power system operation is confronted with unavoidable disturbances, 
maintaining power system stability is one of the most critical problems. Therefore, this 
problem has attracted much attention from several researchers. Currently, three effective 
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and promising methods are used to improve system stability under unpredictable 
disturbances. The first method is the utilization of generator excitation control [1-7]. The 
second method is a combination of the excitation and energy storage system [8, 9]. The 
third method is the coordination of the excitation and Flexible AC Transmission System 
(FACTS) devices [10, 11]. These schemes focus on improving power system stability and 
accomplishing the desired control objectives.  

Because of recently fast developments in power electronic devices, FACTS devices 
have been employed to provide an opportunity to tackle the existing transmission facilities 
effectively and to deal with several constraints for building new transmission lines. Even 
although there are a variety of FACTS, the Static Synchronous Compensator (STATCOM) 
[10, 11] of particular interest in this paper can be employed to increase the grid transfer 
capability through enhanced voltage stability, significantly provide smooth and rapid reactive 
power compensation for voltage support, and improve both damping oscillation and transient 
stability. So far, the generator excitation controller [1] and STATCOM controller [11] have 
separately designed. However, to further enhance the power system stability of power 
systems, the combination of generator excitation and STATCOM is a promising and useful 
method and has attracted much attention in literature for years. 

To the best of our knowledge, based on directly the nonlinear control strategy, there is 
prior work devoted to synthesizing a combined generator excitation and STATCOM 
controller. In [12, 13], adaptive coordinated generator excitation and STATCOM control 
strategy was designed via generalized Hamiltonian control for stability enhancement of large-
scale power systems. With the help of the zero dynamic design and pole-assignment 
scheme, a coordinated controller [14] for the single-machine infinite bus system was 
investigated. A nonlinear coordinated controller [15] has been developed through a 
combination of the passivity design and backstepping technique. Kanchanaharuthai et al. 
[16] have developed an interconnection and damping assignment-passivity based control 
(IDA-PBC) strategy for coordination of generator excitation and STATCOM/battery energy 
storage for transient stability and voltage regulation enhancement of multi-machine power 
systems. In [17], a coordinated immersion and invariance (I&I) control scheme has been 
developed for transient stability improvement and voltage regulation. Kanchanaharuthai [18] 
presented an adaptive I&I control and adaptive backstepping control algorithm to enhance 
transient stability and voltage regulation for power systems with STATCOM in the presence 
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of unknown parameters. In [19], Kanchanaharuthai and Boonyaprapasorn proposed a simple, 
but effective, nonlinear controller to enhance transient stability and voltage regulation for 
power systems including STATCOM via backstepping-like approach. Kanchanaharuthai and 
Mujjalinvimut [20] presented an adaptive backstepping coordinated excitation and STATCOM 
control for power systems in the presence of unknown parameters. Recently, based Takagi-
Sugeno (T-S) fuzzy scheme, a nonlinear stabilizer design [21] for power systems with 
random loads and STATCOM was presented and tested on both single and multi-machine 
power systems. More recently, Kanchanaharuthai and Mujjalinvimut [22] proposed a 
nonlinear control strategy to avoid the problem of the explosion of terms arising in finding a 
derivative of virtual control functions in the conventional backstepping scheme. This paper 
introduced a rapid-convergent differentiator to estimate the derivative with high precision and 
no chattering phenomenon. 

In practice, most engineering systems often have disturbances capable of degrading 
the desired control performances of the closed-loop dynamics inevitably. The disturbances 
considered include external disturbances, parametric uncertainties and other unknown 
nonlinear terms. Therefore, the desired control design method needs to include the 
disturbance dynamics to reject the effects of the abovementioned disturbances. Recently, a 
disturbance observer method is an approach for compensating the result from external 
disturbances and mismatched disturbances/uncertainties. This method has been widely 
accepted in compensating the effects of disturbances. The disturbance observer is utilized 
to estimate disturbances appearing in the system. There are currently the developments of 
disturbance observer design combined with most popular nonlinear control methods such as 
backstepping method [23] and sliding mode method [24], as presented in [23-33]. Based on 
the abovementioned references, disturbance observer-based control is a promising method 
capable of rejecting external disturbances and improving robustness against uncertainties 
[23] simultaneously. It also provides an effective way to handle external disturbances and 
system uncertainties. Additionally, the disturbance observer design method can be further 
extended to a lot of problems in control system societies, such as adaptive control [31], finite-
time control [32], tracking control [33], and so on. Further, this method can be successfully 
applied for numerous kinds of real engineering systems such as flight control systems [24], 
permanent magnet synchronous motors [24], airbreathing hypersonic vehicle systems [25], 
power systems [26, 27], active suspension system [28], electrohydrolic actuator systems 
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[33], and so on. Those indicate significant application potentials of the disturbance observer-
based control method to deal with the effect of unavoidable external disturbances. However, 
even though the control design methods presented in [12-22] have good control 
performances, external disturbances and uncertainties have been not taken into account 
before. These external disturbances may lead to poor performances, and eventually, make 
the system unstable.   

Even though we have so far proposed many prior works [16-20, 22] focusing on the 
design of nonlinear control schemes and adaptive control methods to stabilize power systems 
with STATCOM and accomplish the desired control performance simultaneously, those 
works have not included inevitably external disturbances into the system of interest. 
Therefore, this paper presents a systematic procedure to synthesize a composite nonlinear 
control law based on an improved backstepping control [9, 34-35] combined with the 
disturbance observer design [24]. The obtained controller is developed to cope with the 
adverse effects of unavoidable external disturbances. Therefore, the merits of this work are 
as follows: (a) The use of a nonlinear disturbance observer-based improved backstepping 
control strategy to stabilize the nonlinear power system with STATCOM in the presence of 
external disturbances has not been investigated before; (b) The overall closed-loop system 
dynamics are input-to-state in spite of external disturbances; (c) In comparison with a 
conventional backstepping control, the developed control law offers better dynamic 
performances and a satisfactory disturbance rejection ability. 

The rest of this paper is organized as follows. Simplified synchronous generator and 
STATCOM models are briefly described, and the problem statement is given in Section 2. 
The control design is given in Section 3 Simulation results are given in Section 4. 
Conclusions are given in Section 5. 

 
2.  Power System Model Description 
2.1 Power system model with STATCOM 

The complete dynamical model [17-20, 22] of the synchronous generator (SG) 
connected to an infinite bus with STATCOM dynamics can be expressed as follows: 
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with ( , ),  ( , ),  ,  ,  e e e sP P P P a   and b  given in [17-20, 22], where   is the power 

angle of the generator,   denotes the relative speed of the generator, 0D   is a damping 
constant, mP  is the mechanical input power, E  denotes the generator transient voltage 
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=  is the electrical power, without STATCOM, delivered by the 

generator to the voltage at the infinite bus V , s  is the synchronous machine speed, 
2s f = , H  represents the per unit inertial constant, f  is the system frequency and 
2 / sM H = . 

dX   denotes the direct axis transient reactance of SG and  dX  denotes the 

direct axis reactance of SG. TX  is the reactance of the transformer, and LX  denotes the 

reactance of the transmission line. For simplicity, 1X  is the reactance consisting of the direct 

axis transient reactance of SG and the reactance of the transformer, and 2X  is the 

reactance of the transmission line. 
0T   is the direct axis transient short-circuit time constant. 

fu  is the field voltage control input to be designed. 
QI  denotes the injected or absorbed 

STATCOM currents as a controllable current source, 
QeI  is an equilibrium point of 

STATCOM currents, 
qu  is the STATCOM control input to be designed,  and T  is a time 

constant of STATCOM models. ( ),  ( 1,2,3,4)jd t j =  denote external disturbances and 
system parameter variations. 

For convenience, let us introduce new state variables as follows: 
 

 1 2 3 4,  ,  , ,e s e sx x x P x P   = − = − = =   (2) 



98 Kasem Bundit Engineering Journal Vol.10 No.1 January-April 2020 

 

 Faculty of Engineering, Kasem Bundit University Research Article 

Subsequently, after differentiating the state variables (2), we have the power system with 
STATCOM, which can be written in the following form of an affine nonlinear power system: 
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2.2 Preliminaries 
 In this subsection, for the convenience of the reader, some important definition and 
lemmas are given as follows. Consider the following dynamical system 
 

 ( , , ), , .n my f t y u y u=    (6) 
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Before mentioning a problem statement and a control design procedure, we make the 
following assumption as well. 

Assumption 1: The external disturbances ( ), ( 1,2,3,4)jd t j =  are bounded, and the 
first derivatives of the disturbances above are also bounded. 

Problem statement: The objectives of this paper are to stabilize the power system 

including STATCOM (5) with the external disturbance d  and to accomplish the desired 
control performances, which can be formulated as follows: with the help of the nonlinear 
disturbance observer-based improved backstepping control technique [5], find out, if possible, 

a stabilizing (state) feedback controller u  and disturbance estimation d̂  as follows: 
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such that the overall closed-loop system (5) and (7) is input-to-state stable, where d̂  is the 

estimate of .d  
For the developed design procedure in the next section, a combination of the improved 

backstepping scheme and disturbance observer design will be developed to obtain a 
composite nonlinear controller (7). In comparison with the conventional backstepping 
method, the proposed approach will use the full information of the disturbance estimation 
into each step. Such information is also used for compensating the external disturbances at 
each step, and the estimation error dynamics are included for the closed-loop stability 
analysis. Also, when the system is subjected to external disturbances, the proposed 
composite controller can offer the capability to maintain the power system stability, to reject 
undesired disturbances, and to improve transient control performances. In the following 
section, the developed controller is designed to achieve the desired performances. 
 
3. Controller Design 

This section is aimed to determine a composite nonlinear controller for stabilizing the 
power system with STATCOM under external disturbances. The proposed design procedure 
is divided into three parts. The first part introduces a nonlinear disturbance observer 
technique to online estimate the unknown but bounded, disturbances and to compensate for 
the external disturbance. The second part proposes an approach consisting of the improved 
backstepping control method and the result of the disturbance estimator from the first part 
to find the desired controller in each design step. The last part shows that Lyapunov stability 
theorem is used to analyze the overall closed-loop system stability. Despite having the 
disturbances in the system, the results indicate that it is capable of achieving both the system 
stability and the desired control performances by the obtained controller. 

 
3.1 Nonlinear disturbance observer design 

The aim of designing the disturbance observer is to estimate the external disturbance 
and other uncertainties so that the effect of disturbances is either removed or compensated, 
and the whole system performance can be enhanced. The disturbance observer proposed 
in [21-23] is used to estimate the disturbance and is applied with the control input. Therefore, 
the nonlinear disturbance observer for the system (5) is designed as 
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where 0j   is a design parameter. Thus, based on (8) the disturbance estimation 
dynamics can be expressed in the following form: 
 

 ˆ ˆ( ) ( ), 1,2,3,4.j i j j j jd x p d d j = − = − =  (9) 
 

Let us define the disturbance estimation error as ˆ
j j je d d= − , the estimation error 

dynamics can be expressed as follows. 
 

 .j j j je e d= − +  (10) 
 
3.2 Improved backstepping design 

According to the concept reported in [9,34-35], the stabilization problem for the system 
(5) is solved by designing an improved backstepping control combined with disturbance 
observer design in the previous subsection. The design process is developed step by step 
as follows. 

Step 1: Considering the first subsystem (5), a Lyapunov function is selected as 
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where 1 1z x= .  Then the time derivative of 1V  along the system trajectories becomes 
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From (12), it is seen that *
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Step 2: Let us define the Lyapunov function of Step 1 as 2 2

2 1 2 2

1 1
.

2 2
V V z e= + +  Then 

the time derivative of 2V  along the system trajectories is as follows: 
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 
− − + +

− −  

 (15) 

 
Based on Young inequality [37], it can be straightforwardly computed some terms in (15) 

as 

( ) ( )

( )

2 22 2
2 2 22

2 2 2

* *
2 22 2 2

1 1 2 2 1 1

2 1 1

1
,

1 4 1

ˆ ,
ˆ1

e z
z e

p p

z x x
e c z e

p z d


 +
− −

  
− +  +  −   

  

where 
2

* *
22 2

2 1 1

2 1 1

1
ˆ

ˆ4

x x
c

z d


  
= +    

. From (15), it can be observed that *

3x  and *

4x  are 

considered as the virtual control variables with the disturbance estimates 1d̂  and 2d̂  as 
follows. 
 

( )
( )

( )

* * * *

3 30 3 4 40 4

*

3 3 4

*

30 40

*
2 2

2 1 2 2 2 1 2 2 2 22

1 2 2

* *

3

4

43 3 4 4

, ,
2

,0 1, ,0 1,

1ˆ ˆ ˆ1 ( ) 1 ,
4 1

2

, ,

m

x x p x x p

x P x

x
L M p z Dx M d

p z p z

L L

z

x d k c Mz p
z

x x xx

p

z



− −

=

=   =  

  
  = − + + + + + + −

   −  

=

+

= −−

+ =

 (16) 

 
where 2 20, 0.k    After substituting (16) into (15), we obtain 
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( )

( )

( )

( )

( )
( ) ( )( )( )

( )

2 2 2 2 *

2 1 1 1 1 2 2 2 2 2 2 3 3

2 2

*

2 4 4 1 1 2 2

2

3 3 4 42 2 2 2

1 1 1

3

4

1

2

1 2 2 1 1 2 22 2

2

1
ˆ ( )

1

1

   

4 1

       ( )
1

1 1
2 .

1

V k z e k c z e z x x
M p

z x x e d e d
M p

p z p z
k z k z e e e d e d

M

p

p

z

p

 

  

 
= − − − + + − − − 

− 

− − + +
−

− + −

−

− −

−

 +− − −
−

− +

 (17) 

 
From the definition of *, 3,4i i iz x x i= − = , one has the time derivative of 3 4,z z as 

follows:  
 

 
( )

( )

* * *

*

3 3 3 3 30 3 3 3 30

3

4 4 4 4 40 4 4 4 40

* *

4

1
  ,

1

1
  ,

1

z x x x x x x

z x x x x x x

p z
p

p z
p

== − −−

= −

= −
−

= − − = −
−

 (18) 

 
Step 3: We select a Lyapunov function as follows: 
 

 
4

2 2

3 2

3

1
( ).

2
i i

i

V V z e
=

= + +  (19) 

 
After taking derivatives of both sides of (19), one has 
 

( )
( ) ( )( )( )

( )

2 2 2 2
3 1 1 2 2 1 1 1 2 2 2 3 3 4 4

2

* * * *4
2

1 2 1 1 2 2

3 1 2 1 2

( 2 ) ( ) 1 1
1

       .
ˆ ˆ1

i i i i i
i i i i i

i i

z
V k z k z e e p z p z

M p

z x x x x
x z z e e e e d

p z z d d

 

  
=

= − − − − − − − − + −
−

     
+ − − − − − +   −       


 (20) 

 
Substituting , ( 3,4)ix i =  from (5) 1 2,z z  and *

2x   into (20) yields 
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( )

( )

4
2 2 2 2 2

3 1 1 2 2 1 1 1 2 2 2

3

*
2 3

3 3 31 3 2 1

0 1

* * * ** *

3 3 3 32 2
2 2 2 1 1 1 3 1 1

2 2 1

3

1 1

2

( 2 ) ( ) ( )

     ( ) ( ) ( )

     ( ( ) ) ( )
ˆ ˆ

1

1

i i i i

i

f

V k z k z e e e e d

uz x
z f x g x d x d

M T z

x x x xx x
f x d x d e z e

z z x d d

p

p

  

 

=



 − − − − − − − −


+ − + + + − +



    
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    





 −

−



( )

( )

2 2

2

* *
2 4 4

4 4 41 42 4 2 1 2 2

0 1 2

* *

4

2

* * *

4 2 2 4 4
2 1 1 1 4 1 1 2 2

2 1 1 1 2

ˆ

ˆ     ( ) ( ) ( ) ( ) ( ( ) )

      ( ) .
ˆ ˆ

1

1

ˆ

f q

e
d

u uz x x
z f x g x g x d

p
x d f x d

M T T z z

x x x x x
x d e z e e

z x d d d

p



  



 
    

 
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 

      
+ + − − +    

 −


−

   





 (21) 

 
From (21), to achieve the desired control performance, two suitable control laws are 

chosen as follows: 
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( ) ( )

( )

( )
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* * *
2 3 3 2

3 3 2 1 2 2 2 1

0 31 1 2 2 1

*

3
3 31 32
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2
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2
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1
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1

)

f

q
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x

u z
f x g x

T

p
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p
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

    
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−
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2

2

4

2 2 1
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4
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1

fu x x
x d d f d

T z x

x x
k c c c c z f x x

z z
p d d

p



  
+ + − + +
 

    
− + + + + + + + − +   

−  



 
−





 (22) 

 
where  
 

 
( ) ( )

( ) ( )

2 2
* * * *

1 1 2 2

1 21 21 2

2

2 2

2 2

2 2

2

2
* ** *

3 1 4

2 1 21 21 2

1 1
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1 1
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

      
= + = +           

      
= + = =          

− −

−  −

 (23) 

 
Substituting the presented control law (22) into (21), we have 
 



106 Kasem Bundit Engineering Journal Vol.10 No.1 January-April 2020 

 

 Faculty of Engineering, Kasem Bundit University Research Article 

4
2 2 2 2 2

3 1 1 2 2 1 1 1 2 2 2

3

* * * *4 4
2

1 2 3 4 1 1 2 2

3 1 21 231

4

3 2

( 2 ) ( ) ( )

1
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2
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ˆ

ix x x
e e
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

     
− +            

 (24) 

 
It is observed that the last two terms (24) can be changed into the following inequalities: 
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 (25) 

 
where 1 2 3

ˆ ˆ ˆ,  ,  i i ic c c  and 4
ˆ
ic  have been given in (23). After substituting the four inequalities 

above and then combining those inequalities with (24), we have 
 

 
4 4

2 2 2 2

3 1 1 1 2 2 2

1 3

( ) ( 6 ) ( 5 ) ( )j j j j i i i

j i

V k z e d e e e  
= =

 − + − − − − − −   (26) 

 
In the next subsection, the stability analysis of the closed-loop dynamics with the control 

law (22) is presented. 
 

3.3 Stability Analysis  
In this subsection, the overall closed-loop stability of the system (5) with the proposed 

control law (22) and the error estimation dynamics (10) are analyzed within the framework 
of the Lyapunov theory analysis. Therefore, we can summarize the control design in the 
following theorem. 
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Theorem 1: Under Assumption 1, the nonlinear disturbance observer-based improved 
backstepping controller (22) can guarantee that the overall closed-loop system consisting of 
the system and the disturbance observer error dynamics with the developed controller is 
input-to-state stable 

Proof: To demonstrate the closed-loop stability of the presented control strategy, let us 
define the following Lyapunov function for the closed-loop dynamics. 

 

 
4

2 2

3

1

1
( ).

2
j j

j

V z e
=

= +  (27) 

 
After computing the time derivative of the Lyapunov function candidate (27) and 

selecting 1 01 1 2 02 2 0 06 ,  5 ,  , ( 3,4),  0,( 1,2,3,4)i i i ja a a i a j  = + = + = + =  = , we 
obtain 
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4
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V k z a e e d

k z a e e d
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=
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  



 (28) 

 
where 

1 2 3 4 1 2 3 4 0 01 02 04[ , , , ] ,  [ , , , ] ,  min{ , , , }.T Te e e e e d d d d d a a a a= = =   Besides, the 
inequality (28) is rewritten as 
 

 
4
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3 0 0

1

(1 )j j

j

V k z a e a e e d 
=

 − − − − +  (29) 

 

where 0 1.   Provided that one selects 
0

d
e

a 
 , it is not difficult to get that  

 

 
4

22

3 0

1

(1 ) 0.j j

j

V k z a e
=

 − − −    (30) 
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Thus, the conditions of Lemmas 1 and 2 are satisfied with 2 2

1 1 2 2( ) , ( ) ,r c r r c r = =  

and 0( ) (1/ )r a r = , and we can conclude that the overall closed-loop system is input-to-
state stable [37]. This completes the proof. 

Remark 1: The control parameters ( )2 3 4, ,p p p  in the proposed controller (22)-(23) 
can be viewed as the additional degrees of freedom to improve system performances further. 
Provided that 2 2 4 1p p p= = =  the proposed controller (22) becomes the nonlinear 
disturbance based backstepping control as reported in [27]. 

 
4. Simulation Results 

In this section, to verify the effectiveness of the proposed composite nonlinear controller, 
the developed controller is evaluated via simulations of a single-machine infinite bus (SMIB) 
power system consisting of the dynamic model of synchronous generators and STATCOM 
as shown in Figure 1. The performance of the proposed control scheme is evaluated in 
MATLAB environment under the presence of undesired external disturbances.  

 

 
Figure 1 A single line diagram of the SMIB model with STATCOM 

 
The physical parameters (pu.) and initial conditions 

40
ˆ( ,  ,  ,  , , )e s ee seP P d    for this 

power system model are the same as those used in [16]. 
Additionally, the external disturbances ( , 1,2,3,4)jd j =  acting on the underlying 

system are assumed to be: 
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1

2

3

2

4

3

( ) 0, 0 20,

0.5sin(2 ), 0 5

( ) 1, 5 10,

0.25sin(2 ) , 10 20

0.15cos( ), 0 5

( ) 2, 5 10,

0.5cos( ) , 10 20

0.25sin( ), 0 5

( ) 2, 5 10,

0.3sin( ) , 10 20

t

t

t

d t t

t t

d t t

t e t

t t

d t t

t e t

t t

d t t

t e t

−

−

−

=  

 


=  
  

 


=  
  

 


=  
  

 (31) 

 
The controller parameters are set as 10,  20,  50,j j jk = = =  

2 3 4 0.5, ( 1,2, , 4)p p p j= = = =  . The time domain simulations are carried out to 
investigate the system stability enhancement and the dynamic performance of the designed 
controller, as given in (24), in the system in the presence of external disturbances. The 
control performance of the proposed controller (nonlinear disturbance observer-based 
improved backstepping controller) in (22)-(23) is compared with that of a conventional 
backstepping controller (CBSC) [23] as below. 

 

 

 

2
3 3 3 2 2 2 1 1 2

0 31

2
4 4 4 41 2 2 2 1 1 2

42 0

1 1
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( ) 2

1 1
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u z
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T g x M

u uz
k z f x g x Dx M k z z k x

T g x M T





  
= − − − + − + +  

 


  = − + − − − − + + 
 

 (32) 

 
with  

( )* * * *

1 2 1 1 3 2 2 2 1 1 2

* *

4 3 1 1 1 2 2 2 1 2

1
,  ( 1,2,3,4),  0,  ,  ( ) ,

,  ,  ( )

2
j j j m

m

z x x j x x k z x Dx M k z z k x P

x x P z c z z z f x c x

= − = = = − = − − + + +

= − = − + = +

 

The simulation results are discussed as follows. Time histories of the power angle, 
frequency, transient internal voltage, and STATCOM current under two controllers are 
presented in Figure 2. Also, the results of disturbance estimation and external disturbances, 
together with disturbance estimation error, are demonstrated in Figures 2 and 3. From these 
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figures, it can be seen that the developed method and the CBSC method can successfully 
stabilize the system despite having external disturbances given in (32). Besides, it can be 
observed that the presented control has not only better dynamic performances, but also 
satisfactory disturbance rejection ability such as shorter settling time, a quick rise time, and 
a faster convergence rate. All time responses are significantly more damped with the 
proposed scheme than with the CBSC scheme. Compared with the presented method, the 
CBSC scheme has poor dynamic performances such as unsatisfactory and higher 
overshoots and slowly suppressing system oscillations. These results are because, in the 
developed control framework, the proposed nonlinear control combines the advanced 
feedback control law with the full use of disturbances information in each step to compensate 
for the adverse effects of inevitable disturbances. In contrast, the CBSC method does not 
include the compensation of external disturbances in the designed control law (33). Figure 
3 shows that the disturbance estimators can rapidly track the unknown external disturbances 
with a fast convergence rate and no oscillations. Also, the error between unknown 
disturbances and disturbance estimator is shown in Figure 4. 

From the simulation results mentioned above, it is evident that as the presented method 
combined with the disturbance observer design is applied to the SMIB power system with 
STATCOM under external disturbances, the advantages over the CBSC method are as 
follows.  

(i) The proposed control law is effectively designed to stabilize the system in the 
presence of undesired disturbances. 

(ii) The developed control strategy can make the overall closed-loop dynamics 
converge more quickly to the desired equilibrium point. It is evident that the presented control 
law performs well and has considerable practical disturbance rejection ability. It offers 
superior transient performances illustrated by the rapidly suppressing system oscillations in 
all time trajectories in spite of having external disturbances. 

(iii) The process of designing the desired control law includes some auxiliary terms 
into the virtual control laws and the final controller. These terms can deal with the crossing 
terms arising from disturbances, compensation errors, and system states. In contrast, these 
terms are not included in the CBSC method, thereby leading to unsatisfactory control 
performances.   
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Figure 2 Controller performance- power angle ( )  (deg.), frequency ( )s −  rad/s. 

and  Transient voltage ( )E  pu., and STATCOM current QI  
 

 
Figure 3 External disturbances and disturbance estimations 
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Figure 4 Disturbance estimation errors 

 
5. Conclusions 

In this paper, a composite nonlinear control strategy has been developed for power 
systems with STATCOM under external disturbances. The presented composite control law 
has been designed based on a combination of improved backstepping control and a 
disturbance observer method. This combination can offer not only better dynamic 
performance, but also effective disturbance rejection ability as compared with the 
conventional backstepping control (CBSC). With the help of Lyapunov control theory, the 
stability analysis of closed-loop system has been provided in spite of having both non-
vanishing and vanishing disturbances. The simulation results have confirmed that even 
though the CBSC method is an effective method to stabilize the overall closed-loop 
dynamics, the composite nonlinear control can improve obviously faster transient 
performances and has better disturbance rejection property than the CBSC method.  
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